Graph Clustering Based on Structural/Attribute Similarities

نویسندگان

  • Yang Zhou
  • Hong Cheng
  • Jeffrey Xu Yu
چکیده

The goal of graph clustering is to partition vertices in a large graph into different clusters based on various criteria such as vertex connectivity or neighborhood similarity. Graph clustering techniques are very useful for detecting densely connected groups in a large graph. Many existing graph clustering methods mainly focus on the topological structure for clustering, but largely ignore the vertex properties which are often heterogenous. In this paper, we propose a novel graph clustering algorithm, SA-Cluster, based on both structural and attribute similarities through a unified distance measure. Our method partitions a large graph associated with attributes into k clusters so that each cluster contains a densely connected subgraph with homogeneous attribute values. An effective method is proposed to automatically learn the degree of contributions of structural similarity and attribute similarity. Theoretical analysis is provided to show that SA-Cluster is converging. Extensive experimental results demonstrate the effectiveness of SA-Cluster through comparison with the state-of-the-art graph clustering and summarization methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graph Hybrid Summarization

One solution to process and analysis of massive graphs is summarization. Generating a high quality summary is the main challenge of graph summarization. In the aims of generating a summary with a better quality for a given attributed graph, both structural and attribute similarities must be considered. There are two measures named density and entropy to evaluate the quality of structural and at...

متن کامل

خوشه‌بندی اسناد مبتنی بر آنتولوژی و رویکرد فازی

Data mining, also known as knowledge discovery in database, is the process to discover unknown knowledge from a large amount of data. Text mining is to apply data mining techniques to extract knowledge from unstructured text. Text clustering is one of important techniques of text mining, which is the unsupervised classification of similar documents into different groups. The most important step...

متن کامل

Modified Structural and Attribute Clustering Algorithm for Improving Cluster Quality in Data Mining: A Quality Oriented Approach

The need of Data mining is because of the explosive growth of data from terabytes to petabytes. Data mining preprocess aims to produce the quality mining result in descriptive and predictive analysis. The quality of a clustering result depends on both the similarity measure used by the method and its implementation. A straightforward way to combine structural and attribute similarities is to us...

متن کامل

Finding Community Base on Web Graph Clustering

Search Pointers organize the main part of the application on the Internet. However, because of Information management hardware, high volume of data and word similarities in different fields the most answers to the user s’ questions aren`t correct. So the web graph clustering and cluster placement in corresponding answers helps user to achieve his or her intended results. Community (web communit...

متن کامل

Sampling from social networks’s graph based on topological properties and bee colony algorithm

In recent years, the sampling problem in massive graphs of social networks has attracted much attention for fast analyzing a small and good sample instead of a huge network. Many algorithms have been proposed for sampling of social network’ graph. The purpose of these algorithms is to create a sample that is approximately similar to the original network’s graph in terms of properties such as de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PVLDB

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2009